放射性气溶胶同时荷电-凝并模型的开发Development of simultaneous charging-coagulation model for radioactive aerosols
齐志超,王辉,孙晓晖,陈巧艳,于溯源
摘要(Abstract):
放射性气溶胶发生衰变时会引起表面电荷累积,带电颗粒间发生静电相互作用,影响气溶胶的演化和迁移。为了探究颗粒荷电对气溶胶凝并行为的影响,从气溶胶荷电-凝并机制出发,建立完整的荷电-凝并双变量群平衡方程,使用分区法和单元平均技术数值求解。开发适用于放射性气溶胶发生的荷电-凝并行为的计算模型,使用近似解析方法和经典实验进行验证分析。结果表明:荷电-凝并模型能够准确预测与放射性气溶胶同时发生的荷电-凝并行为,对颗粒荷电对凝并动力学行为的直接影响进行阐释。
关键词(KeyWords): 放射性气溶胶;荷电-凝并模型;双变量群平衡方程;分区法
基金项目(Foundation): 国家重点研发计划项目,编号:2020YFB1901401
作者(Author): 齐志超,王辉,孙晓晖,陈巧艳,于溯源
DOI: 10.13732/j.issn.1008-5548.2023.06.011
参考文献(References):
- [1]朱继洲.核反应堆安全分析[M].西安:西安交通大学出版社,2004.ZHU J Z.Nuclear reactor safety analysis[M].Xi’an:Xi’an Jiaotong University Press,2004.
- [2]颜翠平,陈海焱,林龙沅,等.放射性气溶胶净化的研究进展[J].中国粉体技术,2008,14(4):47-50.YAN C P,CHEN H Y,LIN L Y,et al.Progression for scavenging radioactive aerosol[J].China Powder Science and Technology,2008,14(4):47-50.
- [3]王辉,孙晓晖,邢继,等.基于滑移通量模型的毛细管内气溶胶输运与滞留数值研究[J].原子能科学技术,2022,56(增1):50-57.WANG H,SUN X H,XING J,et al.Numerical research on aerosol transport and retention in capillary tubes based on drift-flux model[J].Atomic Energy Science and Technology,2022,56(S1):50-57.
- [4]陈君岩,高璞珍,谷海峰,等.事故后聚并对亚微米气溶胶重力沉降的影响[J].哈尔滨工程大学学报,2022,43(12):1719-1727.CHEN J Y,GAO P Z,GU H F,et al.Effects of coagulation on the gravity deposition of submicron aerosols under severe accident conditions[J].Journal of Harbin Engineering University,2022,43(12):1719-1727.
- [5]HAN S,LI Y,WEN G,et al.Study on thermophoretic deposition of micron-sized aerosol particles by direct numerical simulation and experiments[J].Ecotoxicology and environmental safety,2022,233:113316.
- [6]王竞弘,彭威,于溯源.核反应堆严重事故中气溶胶的吸湿增长研究进展[J].核动力工程,2022,43(2):138-151.WANG J H,PENG W,YU S Y.A review of research on aerosol hygroscopic growth in severe nuclear reactor accidents[J].Nuclear Power Engineering,2022,43(2):138-151.
- [7]LI Y,ZHOU Y,SUN Z,et al.Analysis of hygroscopic growth properties of soluble aerosol under severe nuclear accidents conditions[J].Progress in Nuclear Energy,2020,127:103464.
- [8]田林涛.安全壳内源项气溶胶去除特性实验研究[D].哈尔滨:哈尔滨工程大学,2020.TIAN L T.Experimental study on aerosol removal characteristics of source term in containment[D].Harbin:Harbin Engineering University,2022.
- [9]万永鑫.安全壳内气体与气溶胶输运模型开发与分析[J].科学技术创新,2022(14):169-172.WAN Y X.Development and analysis of gas and aerosol transport models in containment[J].Scientific and Technological Innovation,2022(14):169-172.
- [10]MA Z,MA T,WANG B,et al.Meso-scale numerical analysis for transport and deposition behaviors of radioactive aerosols under severe nuclear accident[J].Progress in Nuclear Energy,2022,150:104314.
- [11]YUAN X,WEI J,ZHANG B,et al.Development and application of an aerosol model under a severe nuclear accident[J].Frontiers in Energy Research,2022,10:200.
- [12]YEH H,NEWTON G,RAABE O,et al.Self-charging of 198 Au-labeled monodisperse gold aerosols studied with a miniature electrical mobility spectrometer[J].Journal of Aerosol Science,1976,7(3):245-253.
- [13]YEH H,NEWTON G,TEAGUE S.Charge distribution on plutonium-containing aerosols produced in mixed-oxide reactor fuel fabrication and the laboratory[J].Health physics,1978,35(3):500-503.
- [14]CLEMENT C,HARRISON R.The charging of radioactive aerosols[J].Journal of Aerosol Science,1992,23(5):481-504.
- [15]GENSDARMES F,BOULAUD D,RENOUX A.Electrical charging of radioactive aerosols-comparison of the Clement-Harrison models with new experiments[J].Journal of aerosol science,2001,32(12):1437-1458.
- [16]孙晓晖,孙婧,王辉,等.事故工况下核电厂安全壳内放射性气溶胶电荷分布研究[J].原子能科学技术,2022,56(增1):67-73.SUN X H,SUN J,WANG H,et al.Study on radioactive aerosol charge distribution in containment of nuclear power plant during severe accident[J].Atomic Energy Science and Technology,2022,56(S1):67-73.
- [17]PALSMEIER J F,LOYALKA S K.Evolution of charged aerosols:role of charge on coagulation[J].Nuclear Technology,2013,184(1):78-95.
- [18]DE LA TORRE AGUILAR F,LOYALKA S K.Simulation of multiple-component charged aerosol evolution[J].Nuclear Science and Engineering,2020,194(5):373-404.
- [19]潘陈烨.荷电颗粒在声场中的凝并特性研究[D].常州:常州大学,2022.PAN C Y.Study on condensation characteristics of charged particles in sound field[D].Changzhou:Changzhou University,2022.
- [20]KIM Y H,YIACOUMI S,NENES A,et al.Charging and coagulation of radioactive and nonradioactive particles in the atmosphere[J].Atmospheric Chemistry and Physics,2016,16(5):3449-3462.
- [21]ALONSO M,HASHIMOTO T,KOUSAKA Y,et al.Transient bipolar charging of a coagulating nanometer aerosol[J].Journal of Aerosol Science,1998,29(3):263-270.
- [22]ALONSO M.Simultaneous charging and Brownian coagulation of nanometre aerosol particles[J].Journal of Physics A:Mathematical and General,1999,32(8):1313-1327.
- [23]ORON A,SEINFELD J H.The dynamic behavior of charged aerosols:III.Simultaneous charging and coagulation[J].Journal of Colloid and Interface Science,1989,133(1):80-90.
- [24]SHARMA G,WANG Y,CHAKRABARTY R,et al.Modeling simultaneous coagulation and charging of nanoparticles at high temperatures using the method of moments[J].Journal of Aerosol Science,2019,132(1):70-82.
- [25]KUMAR J,PEGLOW M,WARNECKE G,et al.The cell average technique for solving multi-dimensional aggregation population balance equations[J].Computers & Chemical Engineering,2008,32(8):1810-1830.
- [26]GUNN R.Diffusion charging of atmospheric droplets by ions and the resulting combination coefficients[J].Journal of Atmospheric Sciences,1954,11(5):339-347.